
Introduction
The AMSAT FOX-1 satellite is scheduled
for launch in November 2014. FOX-1 will
carry a conventional FM repeater with an
unconventional telemetry design. There will be
two modes:

1. A “Full-Speed Data” mode that will run at
about 10 kb/s when the repeater isn’t operational.
This mode is intended for receiving camera
images from the spacecraft.

2. A “Data Under Voice” mode that will run
continuously during repeater operation in the
sub-audible range below 200 Hz.

Because FOX-1 carries only a FM transmitter, all
data will be sent as noncoherent FSK.

Data Under Voice Mode
During normal FM repeater operations, FOX-
1 will transmit a continuous telemetry stream
at a data rate of 140 bps. This very low rate is
necessary because the signal must fit below the
normal speech audio band that begins at about
300 Hz. To provide for a margin, the channel
signaling rate will be 200 bps, which results in
a spectral null at 200 Hz. A relatively simple
lowpass filter removes the spectral components
above this frequency.

The 60 bps difference between the data and
channel bit rates is taken up by forward error
correction coding (a Reed-Solomon block code)
and line coding for spectral shaping.

Telemetry Voice

DC gap guard band

Hz
0 1000 2000 3000

FOX-1 FM Transmitter Baseband Spectrum

0 100 200 300 400

FOX-1 Telemetry Coding And Modulation Design
Phil Karn, KA9Q
Paul Williamson, KB5MU
Michelle Thompson, W5NYV

Forward Error Correction
AMSAT’s extensive experience with LEO
satellites suggests that the primary impairment of
the FOX-1 telemetry channel will be slow fading
due to a non-uniform antenna pattern, slow
spacecraft rotation and a changing view angle
as seen by the ground station. Because of the
generous link margins afforded by the relatively
short slant range, the signal should be very
strong except when in a fade.

Random bit errors are characteristic of weak
signal systems, such as a high-altitude satellite
where the primary impairment is thermal noise.
These sorts of systems are modeled as channels
with additive white gaussian noise (AWGN). The
errors are distributed randomly with respect to
time. Convolutional encoders are customarily
used in such applications because they are a
good solution for the detection and correction
of random errors. The conventional choice of
forward error correction (FEC) for the AWGN
satellite channel is convolutional coding with
Viterbi decoding.

For a channel that has slow deep fades, but is
otherwise strong, the conventional choice is

Reed-Solomon block coding. Reed-Solomon
codes don’t perform as well as convolutional
codes when dealing with random bit error
patterns, and convolutional codes don’t handle
deep fades as well as Reed-Solomon.

Sometimes the two can be combined as on
AMSAT-OSCAR-40 where both thermal noise
and fading due to an asymmetric antenna pattern
were serious concerns. That design included two
layers of interleaving to mitigate the otherwise
harmful effects of fading on convolutional
coding.

The error correction code proposed for the FOX-
1 low speed telemetry mode is the venerable
(255,223) Reed-Solomon (RS) block code over
GF(256).[1] Each RS symbol is an 8-bit data byte
for which the natural block size is 255 bytes (2040
bits) containing 32 bytes of parity and 223 bytes
of data.

RS codes are well suited to fading channels
because they can correct a burst of errors up to
one half the number of parity symbols long. For
FOX-1, this equals 16 bytes in the data-under-
voice channel.

A single (255,223) RS frame can tolerate a fade
up to 800 milliseconds long in each 12.8 second
frame.

A special synchronization byte is sent between
RS blocks not only to help the receiver find block
boundaries, but also to help avoid the false frame
sync that can theoretically occur if the receiver
were to rely only on successful RS decoding.
This can happen because RS codes are cyclic
codes. Cyclic codes have the property that any
shift of a valid codeword always forms another
valid codeword. Should two consecutive frames
contain the same user data, the end of one frame
followed immediately by the beginning of the
next would produce a valid but spurious RS
codeword even with incorrect frame alignment.
The synchronization byte alleviates this risk.

The false sync problem can also be avoided
by “shortening” the RS codeword where the
beginning of the data field is padded with zeroes

400 mW TX power
2000 km Range
145 Mhz Frequency
0 dB Tx losses
0 dBi Tx gain (average)

0 dB Rx losses
0 dBi Rx gain
2000 K Noise T

2.07 =B28/(B6*1000000) m wavelength
-3.98 =10*LOG10(B4)-30 dBW Tx Power
-3.98 =B16+B8-ABS(B7) dBW EIRP
141.7 =20*LOG10(4*PI()*B5*1000/B15) dB Path Loss
-145.68 =B17-ABS(B18) dBW Rx dens
-145.68 =B19+B11-ABS(B10) dBW Rx Power
-195.59 =10*LOG10(B27*B12) dBW/Hz Rx N0
49.92 =B20-B21 dB P/N0
15000 15000 Hz Bandwidth
8.15 =B22-10*LOG10(B23) dB IF SNR

J/K Boltzmann k
m/s Speed of light c

AMSAT FOX-1 Downlink Budget (baseline)
KA9Q, Fall 2013

1.38E-23
299792458

FOX-1 downlink spreadsheet summary

the HDLC framing of the AX.25 packet radio
standard, is NRZI: a ‘0’ is encoded as a signal
change (from - to + or from + to -) and a ‘1’ is
encoded as no change.

For both NRZ and NRZI, random data produces
a sin(x)/x (or sinc) shaped spectrum with nulls
at multiples of the data rate and a maximum
spectral amplitude at DC (0 Hz). This is clearly
undesirable.

The medium speed (9600 bps) FM/FSK modems
pioneered by K9NG and G3RUH address this
problem with a self-synchronizing scrambler, but
it is important to understand that it doesn’t really
fix the problem. The scrambler will eliminate
the even more troublesome spectral line at DC
that occurs when the data stream contains long
constant data strings (NRZ) or long strings of 1’s
(NRZI), or when the 0’s and 1’s are otherwise not
balanced. The scrambler “whitens” the data, i.e.,
it looks random, but a random NRZ stream still
has a spectral maximum at DC.

Sending a signal with a spectral maximum at
DC over a non-DC-coupled channel, like FM,
produces a waveform that, in the short term, is
no longer symmetric around the time axis. This
makes detection less reliable.

But, there are digital encodings with no DC
component regardless of the data sequence, such

that are not actually transmitted. Shortened RS
codes are not cyclic except in the special case
where the data is all zeroes. The FOX-1 software
team will choose the final RS frame size to fit the
“natural” size of a telemetry data frame.

Spectral Shaping
A common problem in many digital transmission
channels and storage systems is that they
cannot pass or store signals with very low
frequency (or DC) components. Typical FM
modulators generally cannot create signals
with DC or low-frequency components, and
typical FM demodulators cannot recreate DC
or low-frequency components. These physical
limitations are assumed to exist for FOX-1
hardware.

An additional related problem occurs with
Doppler shift. When FM is received from a low-
altitude satellite like FOX-1, the Doppler shift
appears as a low-frequency component on the
modulation, almost as if there was a DC offset.
Information in low-frequency components will
be lost. Our decoder cannot rely upon low-
frequency or DC components. Therefore, the
encoder should eliminate low-frequency or DC
components.

The simplest and most common baseband
encoding of a binary digital data signal is the
so-called non-return-to-zero (NRZ) format where
a logic ‘1’ is encoded as a positive signal and a
logic ‘0’ is encoded as a negative signal of the
same magnitude (or vice versa). A closely related
encoding, familiar to amateurs from its use in

AOS

LOS

Closest Approach

D
op

pl
er

 S
hi

ft
(H

z)

−2000

0

2000

Minutes
−5 −4 −3 −2 −1 0 1 2 3 4 5

Typical Doppler Shift During a LEO Pass

0 100 200 300 400 500
0

0% Excess Bandwidth (Nyquist Limit)

100% Excess Bandwidth

Hz

Unfiltered spectrum of 200 baud NRZ and NRZI codes

as the several flavors of Manchester coding.
The best known encodes a logic ‘0’ as one cycle
of a square wave at the bit rate and a logic ‘1’
as one cycle of the same square wave with
opposite polarity. That is, a ‘0’ might become ‘01’
while a ‘1’ would become ‘10’. This completely
eliminates DC and greatly reduces low frequency
components at the cost of doubling the total
signal bandwidth. Peak spectral density now
occurs at the data rate (where NRZ/I has a null)
with the first null occurring at twice the data rate.
This method was used in the AMSAT Phase III
400 bps telemetry system.

It seems like there should be a better way, and
indeed there is. The specific method chosen for

FOX-1 was suggested by Tony Monteiro, AA2TX.
It is called 8b10b coding.

8b10b Line Coding
In 8b10b coding, 8-bit groups of data bits are
turned into 10-bit groups of channel bits with a
lookup table and a 1-bit memory. The tables and
rules were chosen so that regardless of the data
the channel always contains an equal number of
0’s and 1’s over the long term. In other words, it
is DC-free. No 20-bit channel sequence contains
more than two extra 1’s or 0’s, minimizing
low frequency components. And there are
never more than five 0’s or 1’s in a row so that
transitions are frequent enough to maintain
receiver timing synchronization -- a function
otherwise provided by scrambling or bit-stuffing.
Though more complex than Manchester, the
spectral overhead of 8b10b is only 20% vs 50% for
Manchester.

The 8b10b code sees widespread use in modern
digital interfaces and storage from the old
DAT (Digital Audio Tape) through Serial ATA,
Firewire 800, USB 3.0, PCI Express 2.0 and the
HDMI/DVI digital video interface and many
more.

In 8b10b coding, each 8-bit data byte is divided

first 5 bits
examined

Runlength
Disparity Control

maintains DC
balance based on
control functions

last 3 bits
examined

8 Input Bits

3B/4B Encoding

5B/6B Encoding
6B control functions

4B control functions

10 Encoded Bits

8b10b coding block diagram

0 100 200 300 400 500
0

1

Hz

Unfiltered spectrum of 200 baud Manchester code

into 5- and 3-bit components that become 4-bit
and 6-bit channel sequences. About half of the
component values are assigned a single channel
sequence while the rest are assigned two, with
the one chosen to meet the overall balance and
run-length rules. This is done with the help of a
1-bit Runlength Disparity (RD) memory bit.

The effect of 8b10b coding on the spectrum of a
random bit stream can be seen in the following
figures. Produced with Audacity, the first is of
a random bit stream. The second is of an 8b10b
encoded random bit stream. The sample rate is
defined at 48kHz. Therefore, the Nyquist rate is
24kHz. Because the data is taken at the sampling
rate for the random bit stream, the spectrum
appears flat. Had it been stretched to some
number of samples per data bit to produce an
NRZ waveform, then a sinc-shaped spectrum
would emerge.

unfiltered 8b10b spectrum, random data

unfiltered NRZ spectrum, random data

Testing the All-Zeroes Case
It’s generally a good idea to check the spectrum
of the signal when all-zeroes are transmitted in
order to test whether or not there are spectral
problems. All-zeroes are often sent when there is
no data to transmit. Since this is a data pattern
that an operator is likely to encounter, there was
interest in whether or not an operator could hear
or be bothered by the sound of the telemetry
signal.

Because the codeword repeats every 10 samples,
the spectral peaks repeat every Fs/10. In this
simulation, Fs = 48kHz. As expected, the peaks
are every 4.8kHz with no DC component.

￼

Decoding 8b10b
Encoding 8b10b is straightforward,
as it is accomplished with lookup
tables. Decoding it is somewhat
trickier, and there doesn’t seem
to be much in the literature about
how to do it well.

One way is to build an inverse
lookup table to map each 10-bit
channel sequence back to a 8-bit
data sequence. Invalid 10-bit
sequences are flagged as ‘erasures’
to assist the Reed-Solomon
decoder. Helping the Reed-
Solomon decoder in this way, by
giving it the location of the error,
grants us a significant advantage.

When the error locations in a
Reed-Solomon codeword are
unknown, the decoder can correct
up to half as many symbols in
error as there are parity symbols.
For our (255,223) code with 32
parity bytes, we can correct up to
16 bytes in error anywhere

unfiltered 8b10b spectrum, all 0’s data

 in the codeword. But we can do better when at
least some of the error locations are known. Up
to twice as better, in fact. If we know where every
error is located, we can correct as many errors
as we have parity symbols. But, that leaves no
additional detection margin. We are at the limit
of detection, and have to be certain that none
remain.

This works, but we can do even better. Recall that
some 8-bit data values have more than one 10-bit
channel sequence. The encoder can’t just pick at
random, though, it must use the one that meets
the bit-balance rules. That’s the reason for the
runlength disparity control block in the encoder.
It has one bit of memory that keeps track of

which way the balance needs to be guided in
order to balance the number of zeroes and ones.
The receiver can detect more errors, and better
help the RS decoder, by rejecting those 10-bit
sequences that cannot legally follow the previous
10-bit sequence because they would violate the
bit-balance rules.

Since we don’t know in advance which codeword
the runlength disparity control block chose
during the encoding, the best method is to try

both branches and see which decoded stream
complies with bit-balancing. In other words, we
test both codewords and go with the branch that
has better statistics.

 This is essentially what the Viterbi decoding
algorithm does. Although best known for
convolutional decoding, the Viterbi algorithm can
be used to deduce the most likely hidden internal
state of a system from its externally visible clues,
even when noise corrupts some of those clues.
Because the 8b10b encoder has only one bit of
hidden state (the RD bit), compared with 7 or
more in a convolutional encoder, this is actually
pretty easy. Tentatively decode a series of 10-
bit channel words, first by assuming the RD bit

starts at +1 and again assuming it starts at -1. See
which assumption produces a greater number
of successful decodings. With that assumption,
commit the oldest word in the sequence, slide
the observation window one word forward, and
repeat the process.

Control words and synchronization
The 8b10b code provides another useful feature: control words. Because 10 bits are used to encode
only 8 data bits, usable 10-bit patterns are left over that can be used as out-of-band control words.
Up to 12 of these control words can be used, but by carefully restricting their use some very desirable
properties can be had. One is the “comma symbol”, a unique sequence that cannot be found in
any stream of encoded bits, even when word framing is unknown, except when a certain control
word is sent. This word is used after each Reed-Solomon frame to provide a way for the receiver to
synchronize to frame boundaries.

It can also be used to synchronize the receiver to 8b10b boundaries (since frame sync implies word
sync) but an easier way is to examine a sliding window of channel bits looking for the phasing that
results in the fewest number of invalid (erased) data bytes.

￼
[1] GF stands for Galois Field, a finite collection of mathematical symbols or objects that is closed
under addition and multiplication. These fields enable computations in many different applications.
Named for Évariste Galois, a mathematician 1811-1832. He died in a duel.

Contact infomation:

Phil Karn KA9Q karn@ka9q.net
Paul Williamson
KB5MU

kb5mu@amsat.org

Michelle Thompson
W5NYV

w5nyv@yahoo.com

